OVERVIEW OF IMO REGULATIONS

Jorma Kämäräinen
Chief Adviser

Arctic Know-how as Strength
High Tech Centre HTC, Helsinki
19 March, 2015

Responsible traffic.
Bravely together.
Contents of the Presentation

IMO regulations, which have an effect on fuel oil quality:

• MARPOL Annex VI, regulation 14, Sulphur oxides (SOx) and particulate matter

• MARPOL Annex VI, chapter 4, Energy efficiency of ships
Why new Regulations for Sulphur Content of Fuel Oil?

- Emission of particulate matter are harmful to human health

Sulphur Content of Fuel Oil (HFO) Currently in Use by Ships

- Sulphur content of heavy fuel oil grades used by ships in global marine traffic (IMO, MEPC 68/3/2)

Sulphur Distribution for Residual Fuel

Average Sulphur Content 2.46% m/m
The Effect of Sulphur Content on Emissions of Particulate Matter

New MARPOL Annex VI

• In 2008, the International Maritime Organization (IMO) revised its standards on the sulphur content of marine fuels.

• Annex VI, regulation 14, SOx and PM

General requirements

• The sulphur content of any fuel oil used onboard ships shall not exceed the following limits:
 • 4.5% m/m prior to 1 January 2012;
 • 3.5% m/m on and after 1 January 2012; and
 • 0.5% m/m on and after 1 January 2020.

Review provision

• A review of the final 0.5% regulation shall be completed by 2018 to determine the availability of fuel oil to comply with this standard.

• If a decision is taken by the Parties that it is not possible for ships to comply, then the 0.5% standard shall become effective on 1 January 2025.
New MARPOL Annex VI

• Annex VI, regulation 14, SOx and PM

Requirements within Emission Control Areas

• While ships are operating within Emission Control Areas, the sulphur content of fuel oil used onboard ships shall not exceed the following limits:
 • 1.5% m/m prior to 1 July 2010;
 • 1.0% m/m on and after 1 July 2010; and
 • 0.1% m/m on and after 1 January 2015.

Emission Control Areas are:

• The Baltic Sea area (SOx, 2005)
• The North Sea (SOx, 2005/2006)
• The North American Emission Control area (NOx & SOx, 1 August, 2012)
• The United States Caribbean sea area (NOx and SOx, 1 January, 2014)
The Baltic Sea and the North Sea SOx Emission Control Areas

- The Baltic Sea
- North Sea (latitude 62° north and longitude 4° west) and the English Channel
The North American ECA

- The North American Emission Control areas applies generally approximately 200 nm from the Atlantic, Gulf and Pacific coasts and some Hawaiian islands.
- The SOx emission regulations in North American Emission Control area have been in effect since 1 August, 2012.
The United States Caribbean Sea ECA

- The SOx emission regulations in the United States Caribbean Sea ECA in have been in effect since 1 January, 2014.
Compliance Methods

• Use of low sulphur fuel oil, like:
 • Marine Gas Oil or Marine Diesel Oil
 • Low sulphur Heavy Fuel Oil
 • Methanol
 • Biofuels

• Use of gas fuel
 • Liquefied Natural Gas (LNG)

• Use of high sulphur fuel oil and exhaust gas cleaning systems (scrubbers)
 • Open loop scrubber, closed loop scrubbers, hybrid scrubbers and dry scrubbers
Greenhouse Gas Emissions

• According to United Nations Framework Convention on Climate Change (UNFCCC), the following emissions are Greenhouse Gas (GHG) emissions:

• **Carbon dioxide (CO₂)**, methane (CH₄), nitrous oxide (N₂O), HFC, PFC and SF₆ emissions. About 96 % of the GHG emissions are CO₂ emissions.

• Maritime traffic causes 850 million tons of GHG emissions per year (IMO Study on Greenhouse Gas Emissions, 2007), which is about 3.5 % of the total GHG emissions of the mankind.

• The GHG emissions of shipping have doubled since 1990.
Why Measures are needed to reduce CO$_2$ Emissions from Shipping?
The Measures Considered of the IMO to Reduce GHG Emissions

- **Technical measures**
 - Voluntary Energy Efficiency Operational Index (EEOI), see MEPC.1/Circ.684
 - Mandatory Energy Efficiency Design Index (EEDI) and baseline, see MEPC.1/Circ.681
 - Mandatory Ship Energy Efficiency Management Plan (SEEMP), see MEPC.1/Circ.683

- **Economic incentives have been discussed at IMO**
 - A global bunker levy and International Compensation Fund for GHG Emissions from Ships
 - International Emission Trading Scheme (ETS) for shipping
Energy Efficiency Design Index in Chapter 4 to MARPOL Annex VI

• EEDI = (Cost for the Environment) / (Benefit for the Society)
 = theoretical CO₂ emissions from ship / total transport capacity
 [g CO₂/ t nm]

• The formula for calculation of EEDI is

\[
\frac{1}{f_i \cdot \text{Capacity} \cdot V_{\text{ref}} \cdot f_w} \left(\prod_{j=1}^{M} f_j \left(\sum_{k=1}^{N} P_{\text{ME}(k)} C_{\text{FAE}(k)} \cdot C_{\text{FCME}(k)} \right) + \left(\prod_{j=1}^{M} f_j \right) \left(\sum_{k=1}^{N} P_{\text{TR}(k)} - \sum_{j=1}^{N_{i \text{eff}}} f_{\text{eff}(j)} \cdot P_{\text{AE}(j)} \right) C_{\text{FAE}} \cdot C_{\text{FCME}} \right)
\]

where \(C_F \) is a non-dimensional conversion factor between fuel consumption measured and CO₂, \(V_{\text{ref}} \) is the ship speed, \(\text{Capacity} \) is deadweight or gross tonnage of the ship depending on the ship type, \(P \) is the power of the main and auxiliary engines, \(SFC \) is the certified specific fuel consumption, \(f_j \) is a correction factor to account for ship specific design elements, \(f_i \) is the capacity factor for any technical/regulatory limitation on capacity and \(f_w \) is an non-dimensional coefficient indicating the decrease of speed in representative sea conditions.
Example of Calculation of EEDI for Tankers

Ice class IA

Tankers, ice class IA

Baseline GHG-WG 2/2/7
- EEDI
- Ice class corrected EEDI

EEDI [g CO₂/(t x nm)]

DWT

0 25x10³ 50x10³ 75x10³ 100x10³ 125x10³ 150x10³
Tightening of the EEDI Reference Lines in the Future

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk carrier</td>
<td>> 20000 DWT</td>
<td>0%</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Bulk carrier</td>
<td>10000 – 20000 DWT</td>
<td>n/a</td>
<td>0-10% Linear interpolation</td>
<td>0-20% Linear interpolation</td>
<td>0-30% Linear interpolation</td>
</tr>
<tr>
<td>Tanker</td>
<td>> 20000 DWT</td>
<td>0%</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Tanker</td>
<td>4000 – 20000 DWT</td>
<td>n/a</td>
<td>0-10% Linear interpolation</td>
<td>0-20% Linear interpolation</td>
<td>0-30% Linear interpolation</td>
</tr>
</tbody>
</table>
Measures to comply with Energy Efficiency Regulations

- Better hull form
- Better propulsion efficiency
- Innovative energy efficiency technologies
 - Hull air lubrication
 - Wind assistance
 - Waste heat recovery etc.
- Use of LNG as fuel, since the non-dimensional conversion factor \(C_F \) between fuel consumption measured and \(CO_2 \) is smaller for LNG than for fuel oils.
Economic Factors

- In addition to regulations and technical solutions, fuel oil prices have an effect on the choice of ship fuel type.

Picture courtesy of Wärtsilä.
Conclusions

• Fuel types, which meet the new regulations on sulphur content of fuel oil are for example:
 • Marine Gas Oil or Marine Diesel Oil
 • Low sulphur Heavy Fuel Oil
 • Methanol
 • Biofuels
 • Liquefied Natural Gas (LNG)
• Use of LNG also improves energy efficiency of shipping.
• LNG has many benefits from environmental point of view:
 • LNG reduces SOx emissions and emissions of particulate matter, NOx emissions as well as CO₂ emissions from marine diesel engines.
Thank you for your attention

More information:
www.imo.org

Finnish Transport Safety Agency
Kumpulantie 9, 00520 Helsinki
PO Box 320, FI-00101 Helsinki, Finland
Telephone +358 29 534 5000
www.trafi.fi